
OpenMP loops

Paolo Burgio
paolo.burgio@unimore.it

Outline

› Expressing parallelism
– Understanding parallel threads

› Memory Data management
– Data clauses

› Synchronization
– Barriers, locks, critical sections

› Work partitioning
– Loops, sections, single work, tasks…

› Execution devices
– Target

2

What we saw so far..

› Threads
– How to create and properly manage a team of threads

– How to join them with barriers

› Memory
– How to create private and shared variables storages

– How to properly ensure memory consistency among parallel threads

› Data syncronization
– How to create locks to implement, e.g., mutual exclusion

– How to identify Critical Sections

– How to ensure atomicity on single statements

3

Work sharing between threads

› But..how can we split an existing workload among parallel threads?
– Say, a loop

› Typical $c€nario
1. Analyze sequential code from customer/boss

2. Parallelize it with OpenMP (for a "generic" parallel machine)

3. Tune num_threads for specific machine

4. Get money/congratulations from customer/boss

› Might not be as easy as with PI Montecarlo!

How to do 2. without rewriting/re-engineering the code?

4

Exercise

› Create an array of N elements
– Put inside each array element its index, multiplied by '2'

– arr[0] = 0; arr[1] = 2; arr[2] = 4; ...and so on

› Now, do it in parallel with a team of T threads
– N = 19, T ≠ 19, N > T

– Hint: Act on the boundaries of the loop

– Hint #2: omp_get_thread_num(), omp_get_num_threads()

› Example:

5

Let's

code!

0

1

6

T T

7

8

13

T

14

15

18

0

1

4

T T

5

6

9

T

10

11

14

T

15

16

18

T = 3 T = 4

Loop partitioning among threads

› Case #1: N multiple of T
– Say, N = 20, T = 4

› chunk = #iterations for each thread

› Very simple..

6

Let's

code!

𝑖𝑠𝑡𝑎𝑟𝑡 = 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝐷 ∗ 𝑐ℎ𝑢𝑛𝑘; 𝑖𝑒𝑛𝑑 = 𝑖𝑠𝑡𝑎𝑟𝑡 + 𝑐ℎ𝑢𝑛𝑘 + 1

𝑐ℎ𝑢𝑛𝑘 =
𝑁

𝑇
;

0

1

4

T T

5

6

9

T

10

11

14

T

15

16

19

chunk5

Loop partitioning among threads

› Case #2: N not multiple of T
– Say, N = 19, T = 4

› chunk = #iterations for each thread (but last)
– Last thread has less! (chunklast)

7

Let's

code!

𝑖𝑠𝑡𝑎𝑟𝑡 = 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝐷 ∗ 𝑐ℎ𝑢𝑛𝑘; 𝑖𝑒𝑛𝑑 = ቊ
𝑖𝑠𝑡𝑎𝑟𝑡 + 𝑐ℎ𝑢𝑛𝑘 𝑖𝑓 𝑛𝑜𝑡 𝑙𝑎𝑠𝑡 𝑡ℎ𝑟𝑒𝑎𝑑
𝑖𝑠𝑡𝑎𝑟𝑡 + 𝑐ℎ𝑢𝑛𝑘𝑙𝑎𝑠𝑡 𝑖𝑓 𝑙𝑎𝑠𝑡 𝑡ℎ𝑟𝑒𝑎𝑑

𝑐ℎ𝑢𝑛𝑘 =
𝑁

𝑇
+ 1 ; 𝑐ℎ𝑢𝑛𝑘𝑙𝑎𝑠𝑡 = 𝑁% 𝑐ℎ𝑢𝑛𝑘

0

1

4

T T

5

6

9

T

10

11

14

T

15

16

18

chunk
chunk_last

5

4

"Last thread"

› Unfortunately, we don't know which thread will be "last" in time

› But…we don't actually care the order in which iterations are
executed
– If there are not depenencies..

– And..we do know that

0 <= omp_get_thread_num()< omp_get_num_threads()

› We choose that last thread as highest number

8

Let's put them together!

› Case #1 (N multiple of T)

› Case #2 (N not multiple of T)

9

𝑖𝑠𝑡𝑎𝑟𝑡 = 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝐷 ∗ 𝑐ℎ𝑢𝑛𝑘; 𝑖𝑒𝑛𝑑 = ቊ
𝑖𝑠𝑡𝑎𝑟𝑡 + 𝑐ℎ𝑢𝑛𝑘 𝑖𝑓 𝑛𝑜𝑡 𝑙𝑎𝑠𝑡 𝑡ℎ𝑟𝑒𝑎𝑑
𝑖𝑠𝑡𝑎𝑟𝑡 + 𝑐ℎ𝑢𝑛𝑘𝑙𝑎𝑠𝑡 𝑖𝑓 𝑙𝑎𝑠𝑡 𝑡ℎ𝑟𝑒𝑎𝑑

𝑐ℎ𝑢𝑛𝑘 =
𝑁

𝑇
+ 1 ; 𝑐ℎ𝑢𝑛𝑘𝑙𝑎𝑠𝑡 = 𝑁% 𝑐ℎ𝑢𝑛𝑘

𝑖𝑠𝑡𝑎𝑟𝑡 = 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝐷 ∗ 𝑐ℎ𝑢𝑛𝑘; 𝑖𝑒𝑛𝑑 = 𝑖𝑠𝑡𝑎𝑟𝑡 + 𝑐ℎ𝑢𝑛𝑘𝑐ℎ𝑢𝑛𝑘 =
𝑁

𝑇

Work sharing constructs

› A way to distribute work among parallel threads
– In a simple, and "elegant" manner

– Using pragmas

› OpenMP was born for this
– OpeMP 2.5 targets regular, loop-based parallelism

› OpenMP 3.x targets irregular/dynamic parallelism
– We will see it later

10

The for construct

› The iterations will be executed in parallel by threads in the team

› The iterations are distributed across threads executing the parallel region to
which the loop region binds

› for-loops must have Canonical loop form
11

#pragma omp for [clause [[,] clause]...] new-line

for-loops

Where clauses can be:

private(list)

firstprivate(list)

lastprivate(list)

linear(list[: linear-step])

reduction(reduction-identifier : list)

schedule([modifier [, modifier]:]kind[, chunk_size])

collapse(n)

ordered[(n)]

nowait

Canonical loop form

› init-expr; test-expr; incr-expr not void

› Eases programmers' life
– More structured

– Recommended also for "sequential programmers"

› Preferrable to while and do..while
– If possible

12

for (init-expr; test-expr; incr-expr)

structured-block

Exercise

› Create an array of N elements
– Put inside each array element its index, multiplied by '2'

– arr[0] = 0; arr[1] = 2; arr[2] = 4; ...and so on..

› Now, do it in parallel with a team of T threads
– Using the for construct

13

Let's

code!

Data sharing clauses

› first/private, reduction we already know…
– Private storage, w/ or w/o initialization

› linear, we won't see

14

#pragma omp for [clause [[,] clause]...] new-line

for-loops

Where clauses can be:

private(list)

firstprivate(list)

lastprivate(list)

linear(list[: linear-step])

reduction(reduction-identifier : list)

schedule([modifier [, modifier]:]kind[, chunk_size])

collapse(n)

ordered[(n)]

nowait

The lastprivate clause

› A list item that appears in a lastprivate clause is subject
to the private clause semantics

› Also, the value is updated with the one from the sequentially
last iteration of the associated loops

15

lastprivate variables and memory

› Create a new storage for the variables, local to threads, and initialize

16

int a = 11;

#pragma omp for lastprivate(a) \

num_threads(4)

{

a = ...

}

T

T TT

Process memory

a

T0 Stack

11

a

T0 Stack

a

T2 Stack

a

T1 Stack

a

T3 Stack

?

?

?

?

8

5

5

t

Exercise

› Modify the "PI Montecarlo" exercise
– Use the for construct

› Up to now, each threads executes its "own" loop
– i from 0 to 2499

› Using the for construct, they actually share the loop
– No need to modify the boundary!!!

– Check it with printf

17

Let's

code!

0

1

2499

T T

0

1

2499

T

0

1

2499

T

0

1

2499

0

1

2499

T T

2500

2501

4999

T

5000

5001

7499

T

7500

7501

9999

Exercise

› Create an array of N elements
– Put inside each array element its index, multiplied by '2'

– arr[0] = 0; arr[1] = 2; arr[2] = 4; ...and so on..

› Declare the array as lastprivate
– So you can print its value after the parreg, in the sequential zone

– Do this at home

18

Let's

code!

OpenMP 2.5

› OpenMP provides three work-sharing constructs
– Loops

– Single

– Sections

19

The single construct

› The enclosed block is executed by only one threads in the team

› ..and what about the other threads?

20

#pragma omp single [clause [[,] clause]...] new-line

structured-block

Where clauses can be:

private(list)

firstprivate(list)

copyprivate(list)

nowait

Worksharing constructs and barriers

› Each worksharing construct has an implicit barrier at its end
– Example: a loop

– If one thread is delayed, it prevents other threads to do useful work!!

– Remember: barrier = consistent view of the sh memory

21

T
T TT

#pragma omp parallel num_threads(4)

{

#pragma omp for

for(int i=0; i<N; i++)

{

...

} // (implicit) barrier

// USEFUL WORK!!

} // (implicit) barrier

Nowait clause in the for construct

› The nowait clause removes the barrier at the end of a
worksharing (WS) construct
– Applies to all of WS constructs

– Does not apply to parregs!
22

#pragma omp for [clause [[,] clause]...] new-line

for-loops

Where clauses can be:

private(list)

firstprivate(list)

lastprivate(list)

linear(list[: linear-step])

reduction(reduction-identifier : list)

schedule([modifier [, modifier]:]kind[, chunk_size])

collapse(n)

ordered[(n)]

nowait

Worksharing constructs and barriers

› Removed the barrier at the end of WS construct
– Still, there is a barrier at the end of parreg

23

T

T TT

#pragma omp parallel num_threads(4)

{

#pragma omp for nowait

for(int i=0; i<N; i++)

{

...

} // no barrier

// USEFUL WORK!!

} // (implicit) barrier

The sections construct

› Each section contains code that is executed by a single thread
– A "switch" for threads

› Clauses, we already know..
– lastprivate items are updated by the section executing last (in time)

24

#pragma omp sections [clause[[,] clause] ...] new-line

{

[#pragma omp section new-line]

structured-block

[#pragma omp section new-line]

structured-block

...

}

Where clauses can be:

private(list)

firstprivate(list)

lastprivate(list)

reduction(reduction-identifier : list)

nowait

Sections vs. loops

› Loops implement data-parallel paradigm
– Same work, on different data

– Aka: data decomposition, SIMD, SPMD

› Sections implement task-based paradigm
– Different work, on the same or different data

– Aka: task decomposition, MPSD, MPMD

25

The master construct

› The structured block is executed only by master thread
– "Similar" to the single construct

› It is not a work-sharing construct
– There is no barrier implied!!

26

#pragma omp master new-line

structured-block

No clauses

T

Combined parreg+ws

› For each WS construct, there is also a compact form
– In this case, clauses to both constructs apply

27

#pragma omp parallel

{

#pragma omp for

for(int i=0; i<N; i++)

{

...

}

} // (implicit) barrier

#pragma omp parallel

#pragma omp for

for(int i=0; i<N; i++)

{

...

} // (implicit) barrier

#pragma omp parallel for

for(int i=0; i<N; i++)

{

...

} // (implicit) barrier= =

How to run the examples

› Download the Code/ folder from the course website

› Compile

› $ gcc –fopenmp code.c -o code

› Run (Unix/Linux)

$./code

› Run (Win/Cygwin)

$./code.exe

28

Let's

code!

References

› Course website

– http://algo.ing.unimo.it/people/andrea/Didattica/HPC/

› My contacts

– paolo.burgio@unimore.it

– http://hipert.mat.unimore.it/people/paolob/

› Useful links

– http://www.openmp.org

– http://www.google.com

29

http://algo.ing.unimo.it/people/andrea/Didattica/HPC/
mailto:paolo.burgio@unimore.it
http://hipert.mat.unimore.it/people/paolob/
http://www.openmp.org/
http://www.google.com/

